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Abstract
In this paper, we present a strategy for training convolutional neural networks to effectively resolve interference arising from
competing hypotheses relating to inter-categorical information throughout the network. In this work, this is accomplished for
the task of dense image labelling by blending images based on (i) categorical clustering or (ii) the co-occurrence likelihood
of categories. We then train a source separation network which simultaneously segments and separates the blended images.
Subsequent feature denoising to suppress noisy activations reveals additional desirable properties and high degrees of suc-
cessful predictions. Through this process, we reveal a general mechanism, distinct from any prior methods, for boosting the
performance of the base segmentation and salient object detection network while simultaneously increasing robustness to
adversarial attacks.

Keywords Categorical Mixup · Source Separation · Semantic Segmentation · Adversarial Robustness

1 Introduction

The advent of Deep Neural Networks (DNNs) has seen over-
whelming improvement in dense image labeling tasks (Long
et al., 2015; Noh et al., 2015; Badrinarayanan et al., 2017;
Ghiasi & Fowlkes, 2016; Zhao et al., 2017; Islam et al., 2017;
Chen et al., 2018; Islam et al., 2018; He et al., 2017; Li et al.,
2016), however, for some common benchmarks (Evering-
ham et al., 2015) the rate of improvement has slowed down.
While one might assume that barriers to further improve-
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ment require changes at the architectural level, it has also
been borne out that pre-training across a variety of datasets
Russakovsky et al. (2015); Lin et al. (2014) can improve per-
formance that exceeds improvements seen from changing the
model architecture. However, there are challenging scenar-
ios for which DNNs have difficulty regardless of pre-training
or architectural changes, such as highly occluded scenes, or
objects appearing out of their normal context (Singh et al.,
2020). It is not clear though, for dense image labeling tasks,
how to resolve these specific scenarios for more robust pre-
diction quality on a per-pixel level.

In particular, one might expect that failures in correctly
predicting labels for an image are more likely to be seen for
challenging cases once a critical performance threshold has
been reached.

A question that naturally follows from this line of reason-
ing is: How can the number of locally challenging cases be
increased, or the problem made more difficult in general?
In this paper, we address this problem using a principled
approach to improve performance and that also implies a
more general form of robustness.

In our work, the means of solving this problem takes a
direct form, which involves training networks on specially
designed training data of mixed images (see Fig. 1 (top
and middle)) to simultaneously address problems of dense
image labeling (Long et al., 2015; Chen et al., 2015; Noh

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11263-022-01720-7&domain=pdf
http://orcid.org/0000-0003-2508-213X


702 International Journal of Computer Vision (2023) 131:701–716

Fig. 1 Top: Overview of our category-specific image blending to create
a new source dataset (D′). A segmentation network is trained with D′
to simultaneously separate and segment both source and target images.
Middle: Overview of our co-occurrence based image blending to create
a mixed sample in the training batch, while training to simultaneously
separate and segment both source and target images. Bottom: Results
of our approach (SourceSep-CC and SourceSep-CM), Mixup (Zhang
et al., 2018), and CutMix (Yun et al., 2019) on the PASCAL VOC 2012
(Everingham et al., 2015) segmentation task. Note that our methods
substantially improve the overall performance

et al., 2015), and blind source separation (Georgiev et al.,
2005; Huang et al., 2015). Humans show a surprising level
of capability in interpreting a superposition (e.g., average)
of two images, both interpreting the contents of each scene
and determining the membership of local patterns within a
given scene. The underlying premise of this work involves
producing networks capable of simultaneously performing
dense image labeling for pairs of images while also sepa-
rating labels according to the source images. If one selects
pairs on the basis of a weighted average, this allows treat-
ment of the corresponding dense image labeling problem
in the absence of source separation by extension. This pro-
cess supports several objectives: (i) it substantially increases
the number of occurrences that are locally ambiguous that
need to be resolved to produce a correct categorical assign-

ment, (ii) it forces broader spatial context to be considered in
making categorical assignments, and (iii) it stands to create
more powerful networks for standard dense labeling tasks
and dealing with adversarial perturbations. The end goal of
our procedure is to improve overall performance as well as
increase the prediction quality on complex images (see Fig. 1
(bottom)), heavily occluded scenes, and also invoke robust-
ness to challenging adversarial inputs.

The contribution of this paper extends from the approach
presented in our prior work (Islam et al., 2020) which
introduced a categorical clustering based mixup strategy to
generate a new training dataset. In addition, we also proposed
a source separation network (Islam et al., 2020) to simulta-
neously perform dense image labeling for pairs of images
while also separating labels according to the source image
classes. We extend our prior work in the following respects:

– We introduce a new and efficient co-occurrence matrix
basedmixup strategywhich exploits co-occurrence likeli-
hood of semantic categories from the dataset in themixup
process. This technique trains the network to separate
semantic objects in commonly occurring complex scenes
with high degrees of occlusion.

– We show, through extensive quantitative and qualitative
experiments, that our newly introduced mixup technique
outperforms our previous categorical clustering based
technique (Islam et al., 2020) and recent mixing methods
(Zhang et al., 2018; Yun et al., 2019) on the PASCAL
VOC 2012 (Everingham et al., 2015) and MS-COCO
(Lin et al., 2014) datasets, while simultaneously being
less computationally expensive and maintaining robust-
ness to adversarial attacks.

– We evaluate our newly introduced technique for an
additional task, salient object detection, which shows
improvements over the baselines.

– We provide an in-depth analysis and ablations of the
introduced co-occurrence basedmixup technique to show
its influence in improving performance and robustness.

The paper is structured as follows:we discuss relatedwork
in Sect. 2. In Sect. 3, we first introduce two different image
mixup techniques for the task of semantic segmentation fol-
lowed by the source separation network for simultaneous
dense labeling of two disparate images. Subsequently, we
discuss the training procedure, and present the experimen-
tal results in Sect. 4. Finally, we provide extensive ablation
studies in Sect. 5.

2 RelatedWork

Semantic Segmentation. Existing Convolutional Neural
Network (CNN) based works (Long et al., 2015; Chen et al.,
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2015; Noh et al., 2015; Badrinarayanan et al., 2017; Ghiasi
& Fowlkes, 2016; Chen et al., 2017; Takikawa et al., 2019)
have shown widespread success on dense image prediction
tasks (e.g., semantic segmentation). The feature represen-
tations produced in the top layers of shallower and deeper
CNNs (Krizhevsky et al., 2012; Simonyan & Zisserman,
2015; Szegedy et al., 2015; He et al., 2016) carry a strong
semantic representation, perhaps at the expense of retaining
spatial details required for dense prediction due to the poor
spatial resolution among deeper layers.

In particular, atrous convolution (Chen et al., 2017; Yu &
Koltun, 2016; Chen et al., 2018), encoder-decoder structures
(Badrinarayanan et al., 2017; Noh et al., 2015) and pyramid
pooling (Zhao et al., 2017; Chen et al., 2018) have been
employed to decode low resolution feature maps, increase
the contextual view, and capture context at different ranges
of spatial precision, respectively.

Data Augmentation. Existing methods (Bishop, 1995;
Krizhevsky et al., 2012; Hendrycks et al., 2019; Kim et al.,
2020) introduced data augmentation based techniques to reg-
ularize the training of CNNs. These techniques regularize the
models from over-fitting to the training distribution (e.g., cat-
egorical biases) and also improve the generalization ability
by generating extra training samples given the original train-
ing set. Most commonly used data augmentation strategies
are random cropping, horizontal flipping (Krizhevsky et al.,
2012), and adding random noise (Bishop, 1995). Recently
proposed data augmentation techniques, termed AugMix
(Hendrycks et al., 2019) and PuzzleMix (Kim et al., 2020),
were designed to improve the generalization performance
and robustness against corruptions. However, these tech-
niques are extensively evaluated for image classification and
its unclear if these techniques will perform better for dense
labeling tasks. In contrast, our proposed approach can be
complementary to these techniques and could be applied
in conjunction to further improve the dense labeling perfor-
mance and robustness.

Mixup-based Augmentation. More closely related to our
work, contributions (Yun et al., 2019; Zhang et al., 2018;
Tokozume et al., 2018; Inoue, 2018; Cubuk et al., 2019;
French et al., 2020; Harris et al., 2020; Chou et al., 2020)
on data augmentation based techniques share a similar idea
of mixing two randomly selected samples to create new
training data for the image classification or localization
task. Between-Class (BC) learning (Tokozume et al., 2018)
showed that randomly mixing training samples can lead to
better separation between categories based on the feature
distribution. Mixup (Zhang et al., 2018) shares a similar
idea of training a network by mixing the data that reg-
ularizes the network and increases the robustness against
adversarial examples. Manifold Mixup (Verma et al., 2019)
extends Mixup (Zhang et al., 2018) from input space to

feature space and showed improvement on overall perfor-
mance. Further, Guo et al. (2019) proposed an adaptive
Mixup technique to prevent the generation of impropermixed
data. CutMix (Yun et al., 2019) further proposed to over-
lay a cropped area of an input image to another. However,
these methods randomly blend images and may generate
non-optimal training samples according to object distribu-
tions, which might be problematic for more complex dense
labeling tasks. Our proposed techniques aim to address this
issue by utilizing category-level information in the mixup
process. Our proposed framework differs from the above
existing works in that: (i) the network performs simulta-
neous dense prediction and source separation to achieve
superior dense labeling and adversarial robustness; whereas,
other techniques are focused mainly on image classifica-
tion or object localization while using a single output, (ii)
previous methods either mix labels as the ground truth or
use the label from only one sample, while we use both
ground truth labels independently, and (iii) samples are cho-
sen randomly for Mixup (Zhang et al., 2018) and CutMix
(Yun et al., 2019) while we use two intuitive strategies (cat-
egorical clustering, Sect. 3.1.1 and Co-occurrence matrix,
Sect. 3.1.2).

The groundwork for some of what is presented in this
paper appeared previously (Islam et al., 2020), in which we
introduced a categorical clustering based mixup strategy to
generate a new training dataset followed by training a net-
work for source separation with the ultimate goal of semantic
segmentation. However, due to the size of the new training
dataset, the computational load during training was signifi-
cant. In this work, we address this training inefficiency issue
by introducing an intuitive mixup technique which considers
the co-occurrence likelihood of semantic categories before
mixing two images. The main advantage of this new tech-
nique is the training sample generation is done online within
a batch instead of creating a new large dataset offline. We
provide an in-depth analysis of the newly introduced mixup
technique to show its influence in improving performance
and robustness.

3 ProposedMethod

We propose a novel framework capable of solving the dense
labeling problem. Our proposed framework consists of three
key steps: (i) we first apply a blending technique (Sect. 3.1)
on the training dataset either offline (Sect. 3.1.1) or online
(Sect. 3.1.2), (ii) we train a CNN using the generated data
that simultaneously produces dense predictions and source
separations (Sect. 3.2), and (iii) we denoise the learned fea-
tures from the source separation network by fine-tuning on
standard data (Sect. 3.3).
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3.1 Category-Dependent Image Blending

Recentworks (Zhang et al., 2018;Yun et al., 2019; Tokozume
et al., 2018; Inoue, 2018; Cubuk et al., 2019) simply mix two
randomly selected samples to create new training data for
image classification or object localization. Exploring a sim-
ilar direction, we are interested in solving dense prediction
tasks (e.g., semantic segmentation, salient object detection)
in away that provides separation based onmixed images. The
traditional way (Zhang et al., 2018; Tokozume et al., 2018;
Inoue, 2018) of combining two images is by a weighted aver-
agewhich implies that the contents of both scenes appearwith
varying contrast. Randomly combining two source images to
achieve the desired objective is a more significant challenge
than onemight expect in the context of dense prediction. One
challenge is the categorical bias of the dataset (e.g., mostly
the person images will be combinedwith all other categories,
since person is the most common category in PASCALVOC
2012) across the newly generated training set. Previousmeth-
ods (Zhang et al., 2018; Tokozume et al., 2018; Inoue, 2018),
randomly select images to combine, results in a new data dis-
tribution with similar inherent biases as the original dataset.

Algorithm 1 Compute Co-occurrence Matrix
Input: Training Dataset D, Category List C, Total Category, N
Output: Co-occurrence Matrix, Css

1: Css ← zeros(N , N ),

2: for Ci ∈ C do

3: for Ik ∈ D do

/* Compute the unique semantic categories */
4: unique-cat ← unique(Ground-truth(Ik ))
5: if Ci ∈ unique-cat then
6: Remove Ci from unique-cat

7: for m ∈ unique-cat do
8: Css [Ci ,m] ← Css [Ci ,m] + 1
9: end for
10: end if
11: end for
12: end for

To overcome these limitations, we introduce two differ-
ent image blending techniques to create new training data,
denoted as categorical clustering and co-occurrence matrix.
In categorical clustering technique, we augment the train-
ing dataset to generate a new training set in a form that
accounts for source separation and dense prediction. Cat-
egorical clustering combines images based on a uniform
distribution across categories. For the co-occurrence matrix-
based strategy, we consider the co-occurrence likelihood
between semantic objects in the blending process to gen-
erate new training data. The main difference between these
two blending techniques is the way that new training data is

generated. The former one generates a new training dataset
offline while the latter one blends images in the training
batch. Thorough experimentation with our proposed mixing
strategies show improvements in the network’s ability to sep-
arate competing categorical features and can generalize these
improvements to various challenging scenarios, such as seg-
menting out-of-context objects or highly occluded scenes.
We believe that the issue of object-bias within a dataset
will not be completely alleviated by our clustering based
approach. However, our clustering based method combines
objects which rarely co-exist together. This means that each
combination of objects has a much larger number of exam-
ples in the training set than previously. So while there may
be biases, the network will at least see numerous examples
of every object-object combination.

3.1.1 Categorical Clustering

Wefirst generate N (total number of categories in the dataset)
different clusters of images, where each cluster contains
images of a certain category from the training dataset. For
each training sample in a cluster, we linearly combine it with
a random sample from each of the N − 1 other clusters. For
example, given a training sample Ia (dominant) from the
person cluster, we randomly choose a sample Ib (phantom)
from another categorical cluster and combine them to obtain
a new mixed sample, Iss :

Iss = δ ∗ Ia + (1 − δ) ∗ Ib, (1)

where δ denotes the randomly chosen weight that is applied
to each image. We assign the weight such that the dominant
image (Ia) has more weight compared to the phantom one
(Ib). In our experiments, we sample δ uniformly from a range
of [0.7 − 1] for each image pair. Note that for one sample
(e.g., the person cluster), we generate N − 1 new samples.
We continue to generate new training samples for the other
remaining images in the person cluster and perform the same
operation for images in other clusters.

3.1.2 Co-occurrence Matrix

Wepropose an additional technique that blends images based
on the co-occurrences among semantic categories (i.e., prob-
ability of appearing together in an image). Towards this goal,
we first calculate the co-occurrence matrix, Css ∈ R

N×N

(N= number of categories) using Algorithm 1 that contains
the number of times two semantic categories co-occur within
the training set.

Algorithm 2 describes the set of steps for generating new
training samples in a batch based on the pre-computed co-
occurrence matrix.
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Algorithm 2 Co-occurrence based Image Blending
Input: Training Batch B = {I ,G}; Co-occurrence matrix Css , α, max unique Category threshold, γ
Output: New training batch B′

1: if α > 0 then
2: δ ← random.beta(α, α) � Generate δ from beta distribution if α > 0
3: else
4: δ ← 1
5: end if

6: B′ ← {}, Y ′
1← {}, Y ′

2← {}

7: for Ik ∈ B do

8: similarity-score ← zeros(len(B)) � Store similarity score with each sample in the batch other than Ik

9: mixed-category-list ← zeros(len(B)) � Store total number of unique semantic categories

10: for Im ∈ B do

11: if k �= m then
/* Compute the unique semantic categories */

12: K-unique ← unique(Ground-truth(Ik ))
13: M-unique ← unique(Ground-truth(Im ))
14: Remove the background class index and the ignore class index from both K-unique and M-unique

15: if len(K-unique) ≥ 1 & len(M-unique) ≥ 1 then
/* Initialize co-occurrence score to 0 */

16: cooccurrence-score ← 0
/* Compute total co-occurrence score */

17: for i ← 1 to len(M-unique) do
18: for j ← 1 to len(K-unique) do
19: cooccurrence-score ← cooccurrence-score + Css [M-unique[i]][K-unique[j]]
20: end for
21: end for

22: similarity-score [m] ← cooccurrence-score
23: mixed-category-list [m] ← len(M-inique) + len(K-unique)
24: end if
25: end if
26: end for

27: top-sim-idx ← random(0, len(B))
28: top-sim-idx ← argmax(similarity-score) � Choose the index with highest similarity score

/* Restrict the mixing ratio if total number of unique semantic categories > γ in the chosen pair */
29: if mixed-category-list[top-sim-idx] > γ then
30: δ ← 0.9
31: end if

32: Ik
ss ←δ ∗ Ik+ (1 − δ) ∗ Itop−sim−idx � Mix Ik with sample with highest similarity score

33: Y ′
1 ← Y[k] , Y ′

2 ← Y[top − sim − idx] � Choose the corresponding ground-truth segmentation map

34: B′ ← {Ik
ss ,Y ′

1,Y ′
2} � Mixed training sample in Batch, B′

35: end for

In summary: for each training sample, Ia in a batch, B, of
size n, we compute a scalar similarity score with the other
n − 1 samples based on the pre-computed co-occurrence
matrix. Note that we use similarity score to represent the sim-
ilarity (i.e., how likely they will co-occur based on the data
distribution) between two images based on the co-occurrence
score. We pick the sample with highest similarity score, Ib,
to be combined with the sample Ia . Finally, we apply Eq. 1
to generate a new blended training sample. Similar to the
clustering based blending technique, we randomly choose δ

and assign more weight on the dominant image, Ia , com-

pared to the phantom image, Ib. The intuition of assigning
higher weight on the dominant image is that the seman-
tic segmentation task requires to learn the context of the
semantic objects for accurate per-pixel labeling. However,
blending two images with a large number of semantic cat-
egories with lower mixed ratio (i.e., assigning more weight
on the phantom image) substantially increases the possibility
of destroying the contextual information as well as introduc-
ing unlikely samples into the training set when considering
the object distribution. For example, PASCALVOC has very
few images with 7+ objects in it, and therefore training on
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blended images with this many objects may add noise dur-
ing training when more weight is assigned to the phantom
image. Therefore, we choose a threshold for the maximum
number of unique semantic categories, γ . If the total number
of unique semantic categories in the chosen pair is greater
than a certain threshold, we set the mixing ratio, δ to 0.9.

While there exist alternatives (Zhang et al., 2018; DeVries
& Taylor, 2017; Yun et al., 2019) for combining pairs of
images to generate a training set suitable for source separa-
tion training, our intuitive methods are simple to implement
and achieve strong performance on a variety of metrics (see
Sect. 4). Exploring further methods to combine and augment
the training set is an interesting and nuanced problem to be
studied further in the context of dense image labeling.

3.2 Source Separation Network

In this section, we present a fully convolutional source sep-
aration network in the context of dense prediction. Figure2
illustrates the overall pipeline of our proposed method.

Overview and Notations. During training, our goal is to
produce dense predictions of dominant, Ia , and phantom, Ib,
images, given a blended image, Iss . Note that each blended
image, Iss , in the new set is a weighted combination of dom-
inant and phantom images (Ia, Ib). We denote the dominant
predictor as Ft (.) and phantom predictor as Fp(.).

3.2.1 Network Architecture

Figure 2 (left) reveals two key components of the source
separation network including a fully convolutional network
encoder and source separator module (SSM). Given a mixed
image, Iss∈ R

h×w×c, we adopt DeepLabv3 (Chen et al.,
2017) ( fenc) to produce a sequence of bottom-up feature
maps. The SSM consists of two separate branches: (i) dom-
inant, Ft (.), and (ii) phantom, Fp(.). Each branch takes the
spatial feature map, f̂ ib , produced at the last block, res5c,
of fenc as input and produces a dense prediction for the dom-
inant, St , and the phantom, Sp, image. Next, we append a
source separation head (SSH) to generate a final dense pre-
diction of categories for the dominant image. The SSH, Fss ,
simply concatenates the outputs of dominant and phantom
branches followed by two 1×1 convolution layers with non-
linearities (ReLU) to obtain the final dense prediction map,
Sss . The intuition behind the SSH is that the phantom branch
may produce activations that are correlated with the domi-
nant image, and thus the SSH allows the network to further
correct any incorrectly separated features with an additional
signal to learn from.Given amixed image,Iss , the operations
can be expressed as:

f̂ ib = fenc(Iss), St = Ft ( f̂
i
b )

︸ ︷︷ ︸

dominant

, Sp = Fp( f̂
i
b )

︸ ︷︷ ︸

phantom

, (2)

Sss = Fss(St ,Sp)
︸ ︷︷ ︸

source separation

. (3)

3.2.2 Training the Source Separation Network

The source separation network produces two dominant pre-
dictions, Sss and St , including a phantom prediction, Sp;
however, we are principally interested in the final dominant
prediction, Sss . More formally, let Iss ∈ IRh×w×3 be a train-
ing image associated with ground-truth maps (Ga , Gb) in the
source separation setting. To apply supervision on Sss , St ,
and Sp, we upsample them to the size of Ga . Then we define
three pixel-wise cross-entropy losses, �ss , �t , and �p, to mea-
sure the difference between (Sss , Ga), (St , Ga), and (Sp, Gb),
respectively. The objective function can be formalized as:

Lstage1 = �ss + δ ∗ �t + (1 − δ) ∗ �p, (4)

where δ is the weight used to linearly combine images to
generate Iss . Note that the network is penalized the most
on the final and initial dominant predictions, and places less
emphasis on the phantom prediction.

3.3 Feature Denoising Stage

While feature binding and source separation are interest-
ing, the ultimate goal is to see improvement and robustness
for standard images. For this reason, we mainly care about
improving the overall dense prediction. To accomplish this,
we further fine-tune our trained source separation model on
the standard training set which we call the feature denois-
ing stage. In this stage, as we feed a standard image to the
network, the phantom predictor branch, Fph , has no super-
visory signal, instead it acts as a regularizer. We propose the
following technique to penalize the phantom prediction.

Penalize Phantom Activation. Along with �t , we pro-
pose a loss, �PPA, on the phantom prediction to penalize any
activation (and suppress phantom signals and interference).
The goal here is to push the output of the phantom branch
to zero and suppress the phantom. The �PPA loss sums the
absolute value of the confidence attached to categories and
applies a log operation to balance the numeric scale with �t :

�PPA = log
∑

∀i∈h

∑

∀ j∈w

∑

∀k∈c
σ(Sp), Lstage2 = �t + �PPA, (5)

where σ(·) is the ReLU function, which constrains the input
to the log to be a positive value. In Stage 1, fenc,Ft ,Fp, and
Fss are trained in an end-to-end manner. Then, in Stage 2,
fenc, Ft , and Fp are fine-tuned from the Stage 1 weights.
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Fig. 2 An illustration of our proposed framework. At the data end, cat-
egorical collisions are created with a dominant (Ia) and phantom (Ib)
image. Stage 1: The network is trained on mixed data (Iss ) to perform
simultaneous dense labeling and source separation.We use the labels of
both dominant and phantom images as the targets for two separate out-
put channels. Stage 2: Fine-tuning on standard data to further promote

desirable properties along the two dimensions of base performance and
robustness to perturbations. In this stage, the phantom activation of the
second channel is suppressed.Confidencemaps are plottedwith the ‘Jet’
colormap, where red and blue indicates higher and lower confidence,
respectively

4 Experiments

We first present results on the PASCAL VOC 2012 (Ever-
ingham et al., 2015) and MS-COCO (Lin et al., 2014)
semantic segmentation datasets (Sect. 4.3). Unless otherwise
stated, we use the DeepLabv3 (Chen et al., 2017) network
without any bells and whistles (e.g., multi-scale process-
ing, conditional random field) as our baseline model. We
then show qualitative and quantitative evidence that our
proposed mixing techniques improve the network’s abil-
ity to segment highly occluded objects in complex scenes
(Sect. 4.3.3), as well as objects found in out-of-context
scenarios (Sect. 4.3.4). Throughout the experiments,we com-
pare our methods to recent mixing strategies, CutMix (Yun et
al., 2019) andMixup (Zhang et al., 2018).Mixup andCutMix
did not explicitly design their strategies for dense labeling;
however, in CutMix, the authors used CutMix and MixUp
for image localization and object detection tasks, so we view
their strategies as a general data augmentation technique.
Next, we evaluate the robustness of our methods to a variety
of adversarial attacks (Sect. 4.4). We further apply our co-
occurrence based image blending strategy for salient object
detection task and compare the results with existing tech-
niques (Sect. 4.5). Finally, we conduct an extensive ablation
study (Sect. 5) to better tease out the underlying mechanisms
giving performance boosts by evaluating the various image
blending strategies and network architectures.

4.1 Implementation Details

We implement our proposed source separation networks
using PyTorch (Paszke et al., 2017). We apply bilinear inter-
polation to upsample the predicted segmentation map before
the losses are calculated. The source separation networks
are trained using stochastic gradient descent for 50 epochs
with momentum of 0.9, weight decay of 0.0005 and the
“poly” learning rate policy (Chen et al., 2018) which starts at
2.5e−4.Weuse the same strategyduring the feature denoising

stage of training, but with an initial learning rate of 2.5e−5.
During training, we apply random and center cropping to
form 513×513 input images during training and inference,
respectively. For a fair comparison, we implement and train
Mixup (Zhang et al., 2018) and CutMix (Yun et al., 2019)
using the same set of hyper-parameters. We report numbers
for the following variants that are described in what fol-
lows: DeepLabv3 + SourceSep-CC: This network applies
the categorical clustering based image blending with the
DeepLabv3 based source separation network. DeepLabv3
+ SourceSep-CM: This network uses the co-occurrence
matrix based image blending with the DeepLabv3 based
source separation network. DeepLabv3 + Mixup: This net-
work uses the Mixup (Guo et al., 2019) technique with the
DeepLabv3 network. DeepLabv3 + CutMix: This network
applies the CutMix (Yun et al., 2019) technique with the
DeepLabv3 network for the task of semantic segmentation.

4.2 Dataset and EvaluationMetrics

PASCAL VOC 2012: The PASCAL VOC 2012 dataset is
considered the most popular semantic segmentation dataset,
and includes 20 object categories and a background class. It
consists of 1464 training images, 1449 validation images, and
1456 testing images. Following the current common practice
(Chen et al., 2017; Long et al., 2015; Lin et al., 2017; Chen
et al., 2018), we augment the training set using extra labeled
PASCAL VOC images from Hariharan et al. (2011). We use
the standard mean IoU metric to report semantic segmenta-
tion performance.

MS-COCO: MS-COCO 2014 (Lin et al., 2014) dataset
is a large-scale challenging semantic segmentation dataset
which includes 80 object categories and a background class.
Following previous works (He et al., 2017; Ren et al., 2015),
we train our model using the union of 80k train images and
a 35k subset of val images (trainval35k), and report results
on the remaining 5k validation set.
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Table 1 Quantitative
comparisons on PASCAL VOC
2012 val set

Backbone Method mIoU (%)

Res50 DeepLabv3-ResNet50 (Chen et al., 2017) 75.1

DeepLabv3 + Mixup (Zhang et al., 2018) 73.6

DeepLabv3 + CutMix (Yun et al., 2019) 75.1

DeepLabv3 + SourceSep-CC 75.7

DeepLabv3 + SourceSep-CM 76.2

Res101 DeepLabv3-ResNet101 (Chen et al., 2017) 77.1

DeepLabv3 + Mixup (Zhang et al., 2018) 76.2

DeepLabv3 + CutMix (Yun et al., 2019) 76.7

DeepLabv3 + SourceSep-CC 77.9

DeepLabv3 + SourceSep-CM 78.9

Our co-occurrence based source separation network outperforms the other mixing based techniques

4.3 Semantic Segmentation

4.3.1 Results on PASCAL VOC 2012

First, we show the improvements on segmentation accu-
racy by our methods on the PASCAL VOC 2012 validation
dataset. We present a comparison of different baselines and
our proposed approaches in Table 1.

As shown in Table 1, our image blending based source
separation approaches improve the overall mIoU more than
other approaches (Zhang et al., 2018; Yun et al., 2019).
Additionally, the co-occurrence based blending technique
(DeepLabv3+SourceSep-CM) marginally outperforms the
categorical clustering based strategy (0.8%vs 1.8% improve-
ment over the baseline DeepLabv3-ResNet101 method).

We further evaluate our approaches on the PASCALVOC
2012 test set. Following prior works (Chen et al., 2018;
Zhao et al., 2017; Noh et al., 2015), before evaluating our
method on the test set, we first train on the augmented
training set followed by fine-tuning on the original train-
val set. As shown in Table 2, DeepLabv3 with categorical
clustering based source separation network achieves 80.5%
mIoU which outperforms the baseline. Additionally, co-
occurrence based source separation network achieves 81.1%
mIoU which marginally outperforms the baselines and the
categorical clustering based source separation network.

Table 2 Quantitative comparisons of various mixing techniques on
PASCAL VOC 2012 test set

Method mIoU (%)

DeepLabv3-ResNet101 (Chen et al., 2017) 79.3

DeepLabv3 + Mixup (Zhang et al., 2018) 78.9

DeepLabv3 + CutMix (Yun et al., 2019) 80.2

DeepLabv3 + SourceSep-CC 80.5

DeepLabv3 + SourceSep-CM 81.1

Table 3 Quantitative comparisons of various mixing techniques on
MS-COCO (Lin et al., 2014) dataset

Method mIoU (%)

DeepLabv3-ResNet101 (Chen et al., 2017) 51.1

DeepLabv3 + Mixup (Zhang et al., 2018) 47.0

DeepLabv3 + CutMix (Yun et al., 2019) 49.5

DeepLabv3 + SourceSep-CM 53.2

Sample predictions of our methods and the baselines are
shown in Fig. 3. As shown in Fig. 3, our proposed blending
based source separation networks are very effective in captur-
ing more distinct features for labeling occluded objects and
plays a critical role in separating different semantic objects
more accurately. Note the ability of our methods to segment
scenes with a high degree of occlusion (see second last row
in Fig. 3), thin overlapping regions (see top row), or complex
interaction between object categories (see 6th row). While
other methods identify the dominant categories correctly,
they often fail to relate the activations of smaller occluding
features to the correct categorical assignments.

4.3.2 Results on MS-COCO

Next, we show the improvements on segmentation accuracy
on the MS-COCO dataset. We present a comparison of dif-
ferent baselines and our proposed approaches in Table 3.

As shown in Table 3, our co-occurrence based image
blending approach (DeepLabv3+SourceSep-CM) outper-
forms the other mixup based approaches (Zhang et al.,
2018; Yun et al., 2019) by a reasonable margin in terms
of mIoU. Additionally, our co-occurrence based blending
technique also outperforms theDeepLabv3-ResNet101 base-
line method (2.1% improvement). The improvements on this
large-scale challenging dataset further demonstrate the supe-
riority of our approach.
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Image GT DeepLabv3 [21] CutMix [2] Mixup [38] SourceSep-CC (ours)SourceSep-CM (ours)

Fig. 3 Qualitative results on the PASCAL VOC 2012 val set
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4.3.3 Segmenting Highly Occluded Objects in Complex
Scenes

We argue that our mixing and source separation strategies
aremore powerful than existingmixing strategies in complex
sceneswith large amounts of occlusion. One reason for this is
our categorical clustering based mixing strategy (Sect. 3.1)
blends images based on categorical clusters with dynamic
blending ratios. This means that the network will see more
images with a wide array of categories blended together, as
every category is guaranteed to be blended with every other
category. Additionally, the co-occurrence basedmixing strat-
egy blends the images containing semantic objects which are
likely to co-occur frequently (e.g., person and motorcycle).
This strategy allows the network to learn stronger representa-
tions for objects in commonly occurring complex scenes. On
the other hand, other strategies (Yun et al., 2019; Zhang et al.,
2018) use two randomly selected images to blend.Thismeans
the statistics of the generated images will be largely driven
by the statistics of the original dataset. Further, the source
separation module (SSM) is specifically designed for sepa-
rating features before the final layer of the network, allowing
for finer details and semantics to be encoded into the target

and phantom streams. For the other methods, they have a
single prediction, which does not allow for these details to
be separated early enough in the network to encode as much
information as our method.

To substantiate this claim we evaluate each method under
three specific data distributions that range in the amount of
occlusion and complexity: (i) Occlusion: at least one object
has occlusion with any other object (1-Occ) in an image and
all objects have occlusion (All-Occ), (ii) Number of Objects:
total number of object instances regardless of classes, and (iii)
Number of Unique Objects: total number of unique semantic
categories. The results are presented in Table 4. Our meth-
ods outperform the other mixing based methods in all cases.
Interestingly, co-occurrence based blending techniques out-
perform the clustering based blending under most of the data
settings. Note that the improvements on all occlusion and
larger number of unique categories cases are particularly pro-
nounced for our source separationmodels as the performance
drop is substantially less than the other methods, when only
considering images with many unique objects.

We next perform a cross-dataset experiment by taking our
model trained on the PASCAL VOC 2012 training set and
evaluate on the publicly availableOut-of-Context (Choi et al.,

Table 4 Results on complex scenes in terms of mIoU, evaluated using various subsets from the PASCAL VOC 2012 val set

Occlusion Number of Objects Number of Unique Objects
1-Occ All-Occ 1-Obj 2-Obj 3-Obj 4-Obj 2-Obj 3-Obj 4-Obj

# of Images 1128 538 695 318 167 99 375 121 23

DeepLabv3 75.5 74.9 74.6 74.8 76.0 70.0 72.5 63.5 62.1

DeepLabv3 + Mixup 75.4 72.3 77.9 74.3 71.7 68.3 72.0 58.1 59.2

DeepLabv3 + CutMix 76.4 74.3 78.3 75.4 73.0 70.0 72.3 60.1 59.6

DeepLabv3 + SourceSep-CC 77.9 76.1 80.7 77.2 75.6 70.0 74.0 61.5 62.0

DeepLabv3 + SourceSep-CM 78.7 76.1 80.7 77.2 77.9 72.1 75.4 65.6 63.6

Fig. 4 Qualitative examples on
the Out-of-Context (Choi et al.,
2012) (top five rows) and UnRel
(Peyre et al., 2017) (bottom
three rows) datasets. Our
proposed blending based source
separation networks
(SourceSep-CC and
SourceSep-CM) generate higher
quality segmentation maps
compared to the baselines in the
out-of-context scenarios

Image DeepLabv3 [21] Mixup [1] CutMix [2] SourceSep-CC SourceSep-CM
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Table 5 mIoU results on the PASCAL VOC 2012 val set, for the co-occurrence of the most salient person category with five other categories and
the results when these five categories appear alone

Co-occur with person Exclusive
Horse Mbike Bicycle Bottle Car Horse Mbike Bicycle Bottle Car

# of Images 32 34 30 20 45 44 23 29 35 45

DeepLabv3-ResNet101 (Chen et al., 2017) 87.9 81.6 77.7 89.7 89.7 90.9 91.5 60.4 85.4 96.0

DeepLabv3 + Mixup (Zhang et al., 2018) 86.9 82.8 76.5 87.6 86.2 92.5 93.0 60.0 80.6 95.5

DeepLabv3 + CutMix (Yun et al., 2019) 86.2 83.6 76.0 87.4 87.9 94.1 93.8 61.3 82.6 96.2

DeepLabv3 + SourceSep-CC 89.1 87.2 78.5 86.9 89.0 94.0 93.8 61.5 87.9 96.4

DeepLabv3 + SourceSep-CM 89.9 86.7 79.3 88.5 89.2 93.6 95.1 60.2 88.2 96.6
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Fig. 5 Performance on images with various levels of object co-
occurrence. SourceSep-CC, SourceSep-CM, and Mixup (Zhang et al.,
2018) perform better on subsets of images with unlikely co-occurrences

2012) and UnRel (Peyre et al., 2017) datasets. Figure4 visu-
alizes how the segmentation models trained with only VOC
2012 co-occurring objects performs when objects appear
without the context seen in training. Evenwith such challeng-
ing images with out of context objects (person on top of car
(see second row)), our methods produce robust segmentation
masks while the other mixing based methods fail to seg-
ment the objects with detail. The co-occurrence based source
separation network also produces reasonable segmentation
maps despite the nature of training where we blend images
with semantic objects which are likely to co-occur. As the
results shown in Fig. 4 are randomly sampled, there include
examples of SourceSep-CM failing. Note that SourceSep-
CC is trained on blended images with unlikely categorical
combinations but SourceSep-CM is trained on images with
likely categorical combinations.Webelieve this explainswhy
SourceSep-CC may outperform SourceSep-CM on out-of-
context data.We agree thatDeepLabv3performs surprisingly
well on the visualized out-of-context data but since no seg-
mentation labels exist for this dataset we are unable to back
up our hypothesis quantitatively.

4.3.4 Segmenting Out-of-Context Objects

A model that heavily relies on context would not be able
to correctly segment compared to a model that truly under-
stands what the object is irrespective of its context. We
argue that our clustering based mixing strategy performs
better in out-of-context scenarios, as category-based mix-
ing reduces bias in the dataset’s co-occurrence matrix. In
contrast, the co-occurrence based blending technique allows
the source separation network to separate semantic objects
which are likely to co-occur. We conduct two experiments
to quantitatively evaluate each method’s ability to segment
out-of-context objects.

For the first experiment, we identify the top five categories
that frequently co-occur with person in the training set, since
person has the most occurrences with all other categories
based on the co-occurrence matrix. We report performance
in Table 5 on two different subsets of data: (i) Co-occur with
Person: images with both the person and object in it, and (ii)
Exclusive: images with only the single object of interest. As
can be seen from Table 5, when bottle co-occurs with person
all the methods are capable of segmenting bottle and person
precisely, whereas the IoU for bottle is substantially reduced
when bottle occurs alone. However, our proposed methods
(especially the SourceSep-CC) successfully maintain perfor-
mance on the exclusive case.

For the second out-of-context experiment, we first cre-
ate different subsets of images from the VOC 2012 val set
based on the training set’s co-occurrence matrix. We select
thresholds {50, 40, 30, 20, 10}, and only keep images which
have objects that occur less than the chosen threshold. For
instance, the threshold value 50 includes all the imageswhere
the co-occurrence value of object pairs is less than 50 (e.g.,
cat and bottle occur 18 times together, therefore images con-
taining both will be in all subsets except the threshold of
10). Figure5 illustrates the result of different baselines and
our methods with respect to co-occurrence threshold. Our
methods outperform the baseline DeepLabv3-ResNet101
for all the threshold values. Surprisingly, Mixup (Zhang
et al., 2018) achieves very competitive performance under
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Table 6 Adversarial segmentation robustness performance (mIoU) against the UAP (Moosavi-Dezfooli et al., 2017) and GD-UAP (Mopuri et al.,
2018) attacks

Networks Clean Adversarial Images
UAP (Moosavi-Dezfooli et al., 2017) GD-UAP (Mopuri et al., 2018)
ResNet GNet R-No R-All R-Part

DeepLabv3 75.9 59.1 63.6 66.7 63.9 64.0

+ Mixup 75.2 62.9 63.2 65.3 63.2 63.6

+ CutMix 76.2 60.9 64.3 64.2 62.5 62.2

+ SourceSep-CC 77.9 69.1 70.2 68.2 67.0 67.2

+ SourceSep-CM 78.9 63.2 67.1 67.2 65.0 64.9

Image Ground-truth DeepLabv3 [21] Mixup [1] CutMix [2] SourceSep-CC (ours) SourceSep-CM (ours)

Fig. 6 Comparison of baselines and our methods when attacked by GD-UAP (Mopuri et al., 2018) under no data settings. Interestingly, the attack
is more effective on the baselines compared to the network trained with our methods (SourceSep-CC and SourceSep-CM)

few co-occurrence thresholds. In addition, the co-occurrence
based blending network marginally outperforms the clus-
tering based technique which further strengthens the claim
that our co-occurrence based blending technique allows the
network to better separate semantic objects which are more
likely to co-occur.

4.4 Adversarial Robustness

Existing defence mechanisms (Arnab et al., 2018; Xie et
al., 2017; Guo et al., 2018; Madry et al., 2018) against
adversarial attacks (Goodfellow et al., 2014; Kurakin et al.,
2016;Moosavi-Dezfooli et al., 2016, 2017) attempt to reduce
the impact of adversarial examples. Typically, adversarial
defence mechanisms follow two main directions: (i) simply
modifying the classifier to make it more robust, or (ii) trans-
forming the adversarial examples in inference time. Even
though our pipeline does not fall under either of these cate-
gories,we further claim our technique works as an implicit
defensemechanism against adversarial images similar toYun
et al. (2019); Zhang et al. (2018); Inoue (2018); Cubuk et
al. (2019); Harris et al. (2020); Chou et al. (2020). This
is because the network optimization, in the form of source
separation, enhances the capability of interacting with noisy

features while imposing a high degree of resilience to inter-
ference from the superimposed image.

Adversarial Attacks. We generate adversarial examples
using various techniques, including the Universal Adversar-
ial Perturbation (UAP) (Moosavi-Dezfooli et al., 2017) and
Generalizable Data-free Universal Adversarial Perturbation
(GD-UAP) (Mopuri et al., 2018) under different settings.
We use publicly available computed universal perturbations
from these methods to generate adversarial examples for the
PASCAL VOC 2012 val set. For UAP, which is a black-box
attack, we generate adversarial images with both ResNet152
and GoogleNet based universal perturbations. GD-UAP is a
grey-box attack, as it generates a perturbation based on the
source data (VOC 2012 train set) and the backbone network
(ResNet101). For GD-UAP, we compare different levels of
adversarial attack strength by generating the perturbation
based on various amounts of source data information.

Robustness of Segmentation Networks. We evaluate
the robustness of different methods to adversarial examples
and show how source separation-driven training learns to
substantially mitigate performance loss due to perturbation.
Table 6 shows the robustness of different baselines and our
approaches on the PASCALVOC 2012 validation dataset. In
general, DeepLab-based methods (Chen et al., 2018) achieve

123



International Journal of Computer Vision (2023) 131:701–716 713

Table 7 Quantitative
comparison (in terms of max Fβ

and MAE) with recent methods.
Down arrow means lower is
better and up arrow means
higher is better

Methods ECSSD (Yan et al., 2013)

Fβ ↑ MAE ↓
DeepLabv3-ResNet50 (Chen et al., 2017) 0.906 0.045

DeepLabv3 + Mixup (Zhang et al., 2018) 0.893 0.057

DeepLabv3 + CutMix (Yun et al., 2019) 0.903 0.050

DeepLabv3 + SourceSep-CM 0.909 0.043

Table 8 Significance of feature denoising stage (DN)

Methods mIoU

DeepLabv3-ResNet50 (Chen et al., 2017) 75.9

DeepLabv3 + SourceSep-CC (w/o DN) 75.4

DeepLabv3 + SourceSep-CC (w/ DN) 75.7

DeepLabv3 + SourceSep-CM (w/o DN) 76.1

DeepLabv3 + SourceSep-CM (w/ DN) 76.2

DeepLabv3-ResNet101 (Chen et al., 2017) 77.1

DeepLabv3 + SourceSep-CC (w/o DN) 76.4

DeepLabv3 + SourceSep-CC (w/ DN) 77.9

DeepLabv3 + SourceSep-CM (w/o DN) 78.3

DeepLabv3 + SourceSep-CM (w/ DN) 78.9

It is clear that the feature denoising stage further improves the overall
performance under both mixing techniques

Table 9 Performance comparison with and without the source separa-
tion head (SSH) in the source separator module

Methods mIoU

DeepLabv3-ResNet101 (Chen et al., 2017) 77.1

DeepLabv3 + SourceSep-CC (w/o SSH) 76.1

DeepLabv3 + SourceSep-CC (w/ SSH) 76.4

DeepLabv3 + SourceSep-CM (w/o SSH) 77.9

DeepLabv3 + SourceSep-CM (w/ SSH) 78.3

Including the source separation head marginally improves the overall
performance for both techniques. Note, we report the numbers without
the denoising stage

higher mIoU for the segmentation task on clean examples
and are also shown to be more robust to adversarial samples
compared to the shallower networks (Arnab et al., 2018). In
the case of black-box attacks, the adversarial examples orig-
inally generated by UAP on ResNet152, are less malignant
when the clustering based blending method is applied in the
source separation network, while being effective in substan-
tially reducing the performance of other methods.

When we apply a gray-box attack under the setting (R-
All), where VOC 2012 training data and the ResNet101
network are used to generate the perturbation, DeepLabv3
and Mixup show robustness against adversarial examples
which is improved by applying our blending strategies.
Surprisingly, the performance of CutMix is substantially

reduced when tested against adversarial samples generated
by GD-UAP. Similarly, we find that DeepLabv3, Mixup, and
CutMix are also vulnerable to adversarial cases under the
R-No and R-Part settings, where no data and partial data
is used, respectively to generate the perturbations. Notably,
DeepLabv3+SourceSep-CCandDeepLabv3+SourceSep-CM
exhibit significant robustness to extreme cases which further
reveals the importance of source separation training pipeline
to successfully relate internal activations corresponding to
common sources in the adversarial images. In general, the
SourceSep-CC network shows more robustness than the
SourceSep-CM network under various adversarial settings.
The reason behind the greater robustness is that the cluster-
ing based technique allows the source separation network
to be trained on a larger set of noisy mixed data, while the
co-occurrence based method allows mixing only between
images which have semantic objects that are likely to co-
occur.

Figure6depicts the outputs of baselines andour approaches
to the GD-UAP attack on the PASCAL VOC 2012 valida-
tion set. It is clear that our proposed approaches are more
robust against the GD-UAP attack compared to the baseline
methods. These observations and results on different attacks
reveal that the relative ranking of adversarial robustness for
the different networks is improved with the addition of our
proposed blending based source separation training.

4.5 Results on Salient Object Detection

We further validate our proposed co-occurrence based mix-
ing technique on the salient object detection (SOD) task and
present a comparison with existing mixing methods (Yun et
al., 2019; Zhang et al., 2018) in Table 7. Similar to the task of
semantic segmentation, we train the DeepLabv3-ResNet50
(Chen et al., 2017) network with various mixing strategies
on the DUT-S dataset (Wang et al., 2017) and evaluate on
ECSSD dataset (Shi et al., 2016). Since DUT-S dataset does
not provide any semantic segmentation ground-truth, we can
not directly apply our co-occurrence based image blending
technique during training. Towards this goal, we first gen-
erate pseudo semantic labels for DUT-S by simply passing
the images to the DeepLabv3-ResNet50 network trained on
PASCALVOC 2012 dataset for semantic segmentation task.
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Table 10 Influence of
co-occurrence based image
blending techniques and other
components on improving
overall performance. DN
denotes feature denoising stage

Methods mIoU

DeepLabv3-ResNet50 (Chen et al., 2017) 75.1

+ Mixup (Zhang et al., 2018) 73.6

+ Mixup (Zhang et al., 2018) + Co-occurrence 74.2

+ Mixup (Zhang et al., 2018) + Co-occurrence + SourceSep 76.1

+ Mixup (Zhang et al., 2018) + Co-occurrence + SourceSep + DN 76.2

DeepLabv3-ResNet101 (Chen et al., 2017) 77.1

+ Mixup (Zhang et al., 2018) 76.2

+ Mixup (Zhang et al., 2018) + Co-occurrence 77.2

+ Mixup (Zhang et al., 2018) + Co-occurrence + SourceSep 78.3

+ Mixup (Zhang et al., 2018) + Co-occurrence + SourceSep + DN 78.9

While the boundaries of the generated pseudo-labels are not
perfect, the predicted class labels can still be used as image-
level labels in the image blending process.

From Table 7, it can be seen that our DeepLabv3+
SourceSep-CMmethod outperforms or achieves competitive
performance compared to the baseline methods.

5 Ablation Studies

In this section, we examine the variants of our proposed
pipelines by considering three different settings: (i) effective-
ness of the feature denoising stage and source separation head
(ii) influence of the co-occurrence based mixing technique,
and (iii) impact of choosing maximum semantic categories
in the co-occurrence based blending.

5.1 Feature Denoising and Source Separation Head

We examine the effectiveness of the feature denoising (DN)
stage and report results in Table 8. Interestingly, using the
DeepLabv3-ResNet101 (Chen et al., 2017) network as the
backbone, the clustering based mixing approach exhibits
larger improvement with the addition of the denoising stage
than the co-occurrence based technique (1.5% vs. 0.6%
improvement). The reason behind the larger improvement is
that the clustering based technique allows the source separa-
tion network to be trained on a larger set of noisy mixed data,
while the co-occurrence based method allows mixing only
between images which have semantic objects that are likely
to co-occur. This is why, with a deeper backbone network
(e.g., DeepLabv3-ResNet101), the source separation train-
ing with categorical clustering is more noisy which allows
the denoising stage to improve the performance more sub-
stantially.

We also conduct experiments (see Table 9) varying the
source separator module, including the source separation
head (SSH). It is clear that the overall performance of

DeepLabv3-ResNet101 based source separation networks
can be marginally improved with the addition of a source
separation head (0.3% and 0.4% improvement respectively).
We believe the source separation head allows the network to
make a more informed final prediction based on the source
and the phantom activations, and therefore learns to identify
harmful features at inference time, leading to amore accurate
prediction.

5.2 Influence of Co-occurrence basedMixup

We further tease out the importance of our proposed co-
occurrence based technique by simply applying it with
an existing mixup technique. Table 10 presents quantita-
tive results comparing different components. DeepLabv3-
ResNet50 with Mixup (Zhang et al., 2018) achieves 73.6%
mIoU. The performance is improved by 0.6%whenwe apply
co-occurrencematrix basedblendingwithMixup.The source
separation training pipeline further improves the overall per-
formance by 1.9% which is further improved by 0.1% by
applying the denoising stage. From the results, it is clear
that co-occurrence based blending has an clear influence
on improving the segmentation performance. As shown in
Table 10, the results are consistent when we use DeepLabv3-
ResNet101 as the backbone.

5.3 Impact of ChoosingMaximum Semantic
Categories in Co-occurrence basedMixup

Existing mixing based techniques have been applied mostly
on datasets where there exists one dominant semantic object
(e.g., ImageNet (Russakovsky et al., 2015), CIFAR-10).
However, semantic segmentation datasets naturally contain
images with more than one category in complex scenes.
Therefore, randomly combining two source images based on
the co-occurrence likelihood during training to achieve the
desired objective is still a more significant challenge than one
might expect in the context of dense labeling. For instance,
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Table 11 We examine the influence of changing the maximum number
of unique semantic objects during the blending process

Methods mIoU

DeepLabv3-ResNet50 (Chen et al., 2017) 75.1

DeepLabv3 + SourceSep-CM (max = 2) 75.9

DeepLabv3 + SourceSep-CM (max = 3) 76.1

DeepLabv3 + SourceSep-CM (max = 4) 75.6

DeepLabv3 + SourceSep-CM (max = ∞) 76.1

DeepLabv3 + SourceSep-CM (max = ∞) + γ -thres 76.1

DeepLabv3-ResNet101 (Chen et al., 2017) 77.1

DeepLabv3 + SourceSep-CM (max = 2) 77.2

DeepLabv3 + SourceSep-CM (max = 3) 77.6

DeepLabv3 + SourceSep-CM (max = 4) 77.7

DeepLabv3 + SourceSep-CM (max = ∞) 77.0

DeepLabv3 + SourceSep-CM (max = ∞) + γ -thres 78.3

Note,we report the numberwithout any denoising stage. ‘γ -thres’ refers
to the defaultmodelwhich allows the blended images over themaximum
threshold but sets the mixing ratio, γ , to 0.9

if we blend two images containing three and four semantic
objects with a lower mixing ratio (i.e., assign more weight to
the target image), there is a high chance that themixed image
will lack context. Also, images with seven unique objects are
extremely rare or non-existent in the datasets we explore, and
therefore this type of image may be too different from the
target distribution. To explore this issue, we first restrict the
number of unique semantic categories to be blended (e.g., we
do not blend images if the maximum threshold is exceeded).
We additionally try a strategy where we mix the images, but
set the mixing ratio to a constant value (0.9) if this threshold
is surpassed. The intuition is that, for a pair of images where
the total number of unique semantic categories is higher than
the threshold, we want to reduce the amount of blending by
assigning more weight to the dominant image.

Table 11 presents the results of choosing different thresh-
olds in the co-occurrence based mixing process. It is clear
that restricting the mixing ratio when the maximum num-
ber of unique objects in the blended image is greater than a
certain threshold achieves higher mIoU compared to other
alternatives.

6 Discussion and Conclusion

Training with the categorical clustering and a co-occurrence
based source separation pipeline enables learning resilient
features, separating sources of activation, and resolving
ambiguity with richer contextual information. Although
DeepLabv3 is a powerful segmentation network, there are
cases (see Fig. 7) where background objects are correctly
classified (car and plane) but other semantic categories are

Image GT DeepLabv3 SourceSep-CCSourceSep-CM

Fig. 7 Two challenging images where semantic objects are highly
occluded. While pixels belonging to the dominant semantic categories
are identified correctly, the prediction fails to relate activation tied to
smaller occluding features to correct categorical assignments. This is
resolved when trained using our proposed mixing based source separa-
tion networks

not separated correctly due to high degrees of occlusion (per-
son on the stairs, see Fig. 7 right). In contrast, the source
separation based learning approaches are highly capable of
resolving such cases by learning to separate source objects
and tying them to specific regions.

In summary, we have presented two approaches to train
CNNs based on the notion of source separation. This pro-
cess includes, as one major component, careful creation of
categorical collisions in data during training. This results in
improved segmentation performance, and also promotes sig-
nificant robustness to adversarial perturbations. Denoising
in the form of fine-tuning shows further improvement along
both these dimensions.
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